

Super-chilling Aspetti generali e potenziale della tecnologia

Ingrid C. Claussen* and Michael Bantle

SINTEF Energi AS, Dep. of Thermal Energy

Trondheim (Norway)

Ingrid.c.claussen@sintef.no

Linee generali

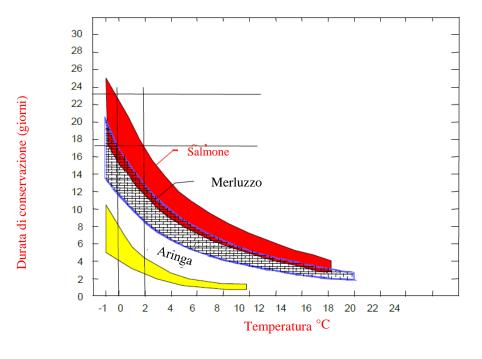
- 1. Antefatti
- 2. Super-Chilling
- 3. Metodo per il Super-Chilling
- 4. Tecnologie per il Super-Chilling
- 5. Vantaggi per l'industria
- 6. Vantaggi per l'ambiente
- 7. Vantaggi per i consumatori
- 8. Le sfide
- 9. Potenzialità future
- 10.Conclusioni

Bibliografia

Risultati dell'apprendimento

- ⇒Che cos'è il super-chilling?
- ⇒Qual'è il potenziale della tecnologia?
 - Dal punto di vista del produttore
 - Dal punto di vista del consumatore
- ⇒I prodotti come possono essere trasformati in prodotti super-chilled
- Quanto ghiaccio si ottiene comunemente nel super-chilling.
- ⇒Che prolungamento della coservazione ci si può aspettare per i prodotto super-chilled?

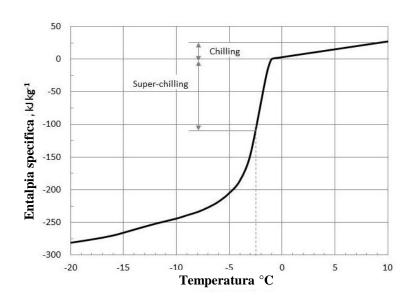
Antefatti I

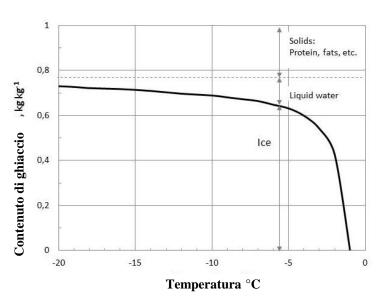

- Descritto già negli anni '20 da Le Danois
- Negli anni '70 e '80: trasporto del pesce in mare le basse temperature hanno aumentato la durata di conservazione
- Sviluppo continuo del concetto nel corso degli ultimi 20 anni
- L'industria alimentare norvegese sta assumendo il concetto di super-chilling, ma solo per uso "interno";
- Espandere la durata di conservazione per facilitare la pianificazione della produzione e dello stoccaggio
 - ✓ Estendere il periodo di vendita del prodotto fresco (carne)
 - ✓ Aumentare la resa del prodotto e la qualità dei filetti di pesce
- I vantaggi legati alla durata di conservazione prolungata non sono pienamente sfruttati.

Antefatti II

 La durata della conservazione, generalmente accettata, dipende dalla temperatura di conservazione e dalle fluttuazioni della temperatura.

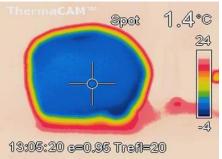
Durata di conservazione pratica per alcune importanti specie ittiche (Nordtvedt, 2009)




Antefatti III

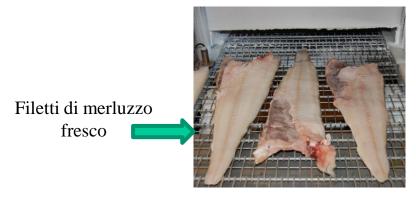
In sintesi il super-chilling

- Contenuto di ghiaccio dal 5% al 20%
- Temperatura di stoccaggio stabile
- Aspetto non congelato



Super-chilling I

- Il super-chilling è un metodo utilizzato per prolungare la conservazione dei prodotti senza ridurne la qualità
- La temperatura del prodotto viene ridotta di 1-2 °C al di sotto di Ti del prodotto (Ti, punto di congelamento iniziale del prodotto)
- Diversi metodi di super-chilling
- Il metodo di super-chilling con aria fredda a bassa temperatura, alta velocità, e breve durata sembra essere il metodo di superchilling più interessante.
- Il risultato è un piccolo strato sottile di ghiaccio formatosi in superficie - "congelamento delle conchiglie"



Super-chilling II

- Il ghiaccio formatosi in superficie assorbirà il calore dall'interno e alla fine si raggiungerà l'equilibrio.
- L'acqua che si trasforma in ghiaccio e viene utilizzata per proteggere il prodotto dall'impatto termico invece, di utilizzare l'aggiunta di ghiaccio esternamente (es. pesce fresco)
- Frazione di ghiaccio tra il 5 e il 30% ok per i pesci, ma varia a seconda del prodotto
- o dal 10 al 15 % di frazione di ghiaccio è "normale
- Il super-chilling riduce la crescita microbiologica e aumenta la durata di conservazione del prodotto

Filetti di merluzzo superchilled

Modulo: Trasformazione sostenibile dei prodotti alimentari biologici

Super-chilling III

Temperatura di stoccaggio contro frazione di ahiaccio

Prodotto	Temperatura di conservazione	Frazione di ghiaccio	Punto di congelamento iniziale
Filetti di salmone	-1.8 °C	6.3 %	-1.6 °C
	-2.2 °C	18.2 %	
	-2.6 °C	26.9 %	
Trota	-2.2 °C	8.2 %	-2.0 °C
	-2.6 °C	21.8 %	
	-3.0 °C	27.0 %	
Sgombro	-1.8 °C	6.3 %	-1.6 °C
	-2.2 °C	18.2 %	
	-2.6 °C	29.3 %	
Aringa -	-1.8 °C	4.0 %	-1.6 °C
	-2.2 °C	11.6 %	
	-2.6 °C	18.7 %	
Merluzzo (acquacultura)	-1.2 °C	10.2 %	-1.0 °C
	-1.6 °C	27.9 %	
	-2.0 °C	38.6 %	
Carne bovina, magra	-1.0 °C	5 %	n.a.
(Valentas 1997)	-2.0 °C	45 %	

Metodi di Superchilling I

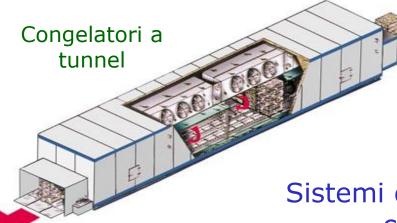
La frazione di ghiaccio è la chiave

- Scientificamente
 - Sviluppare/valutare i metodi di misurazione
 - ⇒ Rapporto tra qualità (sensoriale, tecnica e biochimica) e stato e storia delle frazioni di ghiaccio.
 - ⇒ Sviluppo di un avanzato controllo dinamico di processo
- Commercialmente
 - ⇒ Focus del prodotto
 - Sviluppare un semplice controllo di processo
 - ⇒ Valutazione delle attrezzature
 - Strutture di stoccaggio stabili
 - Logistica

Metodi di Super-chilling

Ci sono diversi metodi per eseguire il super-chilling, anche oggi:

- Il super-chilled consente la conservazione dei cibi senza alcun pretrattamento
- La conservazione super-chilled dopo il congelamento iniziale della superficie a seguito della compensazione della temperatura
- Metodi pratici di super-chilling :
 - Acqua di mare refrigerate (RSW)
 - Tunnel ad aria
 - Raffreddamento per contatto
- Il congelamento iniziale della superficie causa un contenuto di ghiaccio più stabile nel prodotto


Modulo: Trasformazione sostenibile dei prodotti alimentari biologici

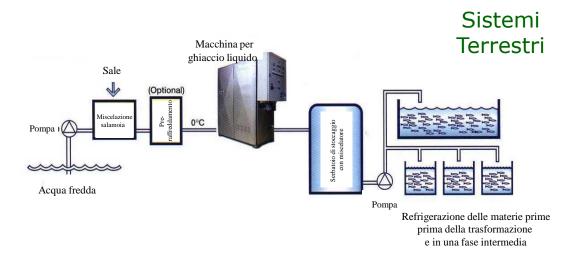
Tecnologie per il super-chilling I

Sistemi di congelamento ad aria compressa

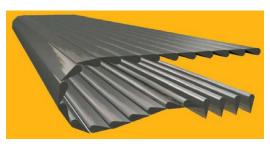
Sistemi a Impingement

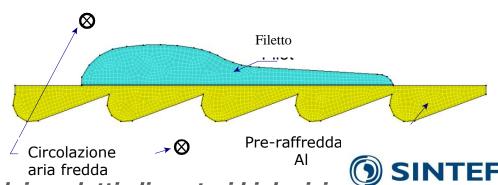
Sistemi di congelamento criogenico

Nebulizzazione di azoto liquido



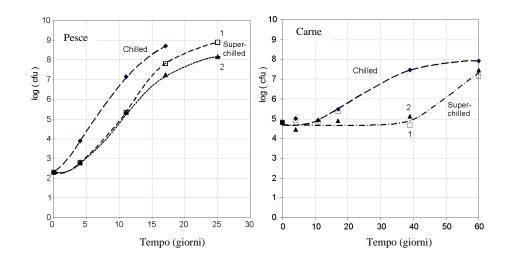
Tecnologie per il super-chilling II




Ghiaccio liquido come refrigerante

CBC - Refrigeratore combinato di abbattitori di temperatura a contatto

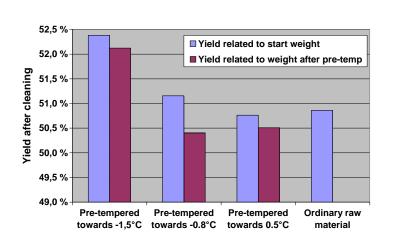
Modulo: Trasformazione sostenibile dei prodotti alimentari biologici



Vantaggi per l'industria I

Durata di conservazione

- Periodo di vendita dei prodotto freschi più lungo. Stoccaggio di merce
- Domanda stagionale per le sole parti degli animali; prosciutto, cotolette
- Il super-chilling riduce la domanda di congelamento (fino al 40%) - più venduto come fresco
- Riduzione del consumo totale di energia per la refrigerazione



Vantaggi per l'industria I

Aumento del reddito

- I filetti di pesce sono leggermente più sodi prima della rifilatura e la carne di pesce viene sprecata
- La ricerca mostra un aumento della resa fino a +1,5% nella produzione di filetti di pesce

Vantaggi per l'ambiente I

Riduzione CO₂ eqv.

- Non c'è bisogno di ghiaccio nelle casse di pesce fresco durante il trasporto
- Dalla Norvegia: 900 camion* con pesce fresco ogni settimana con circa il 25-30% di ghiaccio
- Riduzione del 23% di CO₂ eqv. Passaggio dal trasporto di pesce freddo su ghiaccio al trasporto di pesce super-chilling
- Sono necessari meno camion
 - Meno produzione di ghiaccio in scaglie

Vantaggi per l'ambiente II

- La ridotta necessità di imballaggio e trasporto del ghiaccio in un sistema di super-chilling compenserà l'impatto ambientale di un significativo aumento della domanda di energia nella produzione di super-chilling.
- I filetti freddi hanno un potenziale di impatto ambientale superiore di circa il 30% rispetto ai filetti super-chilled per tutte le categorie di impatto ambientale. Questo numero è un riflesso diretto del contenuto di ghiaccio nelle scatole con filetti freddi.
- Il ghiaccio è il parametro più importante in questa valutazione
- Il trasporto su camion e il materiale di imballaggio sono di gran lunga i due principali fattori che contribuiscono al potenziale di impatto in entrambi i sistemi.
- Il potenziale per ridurre l'impatto sul riscaldamento globale (GWP)
 è di circa 77 925 tonnellate di CO2-equivialens all'anno.
 Corrisponde alle emissioni annuali di circa 24 000 automobili

Vantaggi per l'ambiente III

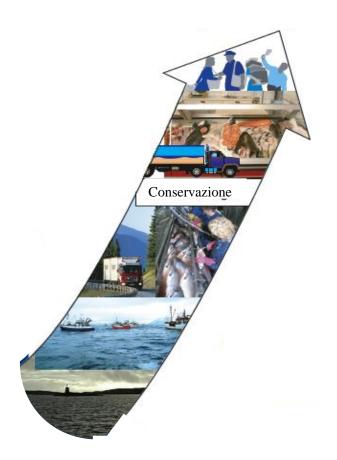
Riduzione degli sprechi alimentari

- Rendimento più elevato
- La doppia durata di conservazione riduce gli sprechi (>30 % oggigiorno)
- Riduzione della domanda di congelamento

Alcune estensioni della durata di conservazione segnalate

Prodotto	Temperature di conservazione dei prodotti super-chilled	Aumento della shelf life (paragone con i prodotti refrigerati)
Filetti di merluzzo (allevato)	-2.2 °C	+ 14 days
Arrosto di maiale	-2.0 °C	+ 14 weeks
Salmone atlantico (allevato)	-1.4 °C and -3.6 °C	+ 17 – 21 days
Pollo	n.a.	+ 15 days
Agnello-1eg, fresco	-1.6 °C	+ 19 days

Vantaggi per i consumatori I 🚥



Qualità degli alimenti

- Aumento della durata di conservazione
- Qualità del prodotto fresco nessuna differenza significativa in termini di perdita di gocciolamento, colore, pH, degradazione proteica e sensoriale
- Sicurezza alimentare
- Aumento della dalla durata di conservazione

Scarti alimentari

 Il doppio della durata di conservazione e meno scarti

Le sfide del super-chilling

- La qualità degli alimenti- aumento del gocciolamento per alcuni prodoti
- È necessaria un'indagine sulla catena del freddo del super-chilling e sull'usp di PCM
- Maggiore consumo di energia rispetto alla refrigerazione tradizionale, ma inferiore al congelamento
- Requisiti rigorosi per il controllo della temperatura Il contenuto di ghiaccio nei prodotti è sensibile alle variazioni di temperatura
- Gli alimenti sono disomogenei, sia per quanto riguarda il contenuto d'acqua, la composizione e le dimensioni
- La tecnologia non è adatta a tutti i prodotti
- Necessità di apparecchiature flessibili di super-chilling e controllo dinamico del processo per l'ottimizzazione
- Necessità di sistemi di refrigerazione ad alta efficienza energetica e sfruttamento del calore in eccesso
- Necessità di personale altamente qualificato presso gli stabilimenti di produzione e ulteriori sfide nella catena del freddo
- Il coinvolgimento e l'approvazione dei consumatori è importante

Potenzialità future

A breve termine c'è un alto potenziale per l'industria tradizionale della carne/portica e del pesce E per il mercato dei prodotti biologici.

Industria

- o minore richiesta di cibi congelati rispetto ai cibi freschi
- o Rifornimento prima delle campagne
- Aumento della resa nell'industria ittica
 non serve ghiaccio durante il trasporto
- di trasporto di pesce fresco

Consumatori

- Riduzione degli scarti
- Aumento della durata di conservazione

Conclusioni

- Il super-chilling permette una conservazione sicura, di alta qualità e a lungo termine degli alimenti
- I vantaggi principali sono
 - 1. Aumento della durata di conservazione
 - 2. Aumento della produttività
 - 3. Aumento del rendimento e del profitto
 - 4. Pianificazione semplificata della produzione
 - 5. Nuovi prodotti e mercati
 - 6. Catena del freddo rispettosa dell'ambiente
 - 7. Può essere adattato ad una vasta gamma di prodotti: Carne, pesce, pesce, pollame.....

Bibliografia



- **Nordvedt, T.S.** (2009) *Superkjøling av fisk- en litteratirstudie og prosjektoveriskt.* In SINTEF Energiprosesser AS, Trondheim 20.
- Claussen, I.C. (2011) Literature review and experimental data of chilled, superchilled/supercooled fish quality and safety models. Deliverable D3.2.4.3 FRISBEE Food Refrigeration Innovations for Safety, Consumers' Benefit, Environmental Impact and Energy Optimisation Along the Cold Chain in Europe
- **Haugland, A.** (2006) *SUPERCHILLING innovative processing of fresh fish* NFTC, Trondheim 7-8 august 2006

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.